A genetic algorithm approach to the nurse scheduling problem with fuzzy preferences

Alejandra Dueñas
James B. Chilcott
School of Health and Related Research, University of Sheffield, UK

G. Yazgı Tütüncü
İzmir University of Economics, Department of Mathematics, İzmir, Turkey

The fifth IMA international conference on QUANTITATIVE MODELLING IN THE MANAGEMENT OF HEALTH CARE
London, 2-4 April, 2007
Outline

- Nurse Scheduling problem definition
- SEMOPS method
- GA definition
- Experimental results
- Conclusions and future work
Nurse Scheduling Problem

N nurses to be scheduled
M days to be scheduled
w shift types
g nurse grades

Schedules are represented in a matrix $M \times N$
Nurse Scheduling Problem

Table 1. Shift Types

<table>
<thead>
<tr>
<th>Shift</th>
<th>Start and end time</th>
<th>Symbol</th>
<th>(w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>day-shift</td>
<td>(8:00-16:00)</td>
<td>(d)</td>
<td>1</td>
</tr>
<tr>
<td>evening-shift</td>
<td>(16:00-24:00)</td>
<td>(e)</td>
<td>2</td>
</tr>
<tr>
<td>night-shift</td>
<td>(00:00-8:00)</td>
<td>(n)</td>
<td>3</td>
</tr>
<tr>
<td>day off</td>
<td>---------------------</td>
<td>(o)</td>
<td>0</td>
</tr>
</tbody>
</table>

Decision variable:

\[
x_{ijw} = \begin{cases}
1 & \text{if nurse } i \text{ works shift } w \text{ on day } j \\
0 & \text{otherwise}
\end{cases}
\]
Constraints definition

Hard constraints:

- Each nurse can work only one shift a day

\[
\sum_{w=1}^{3} x_{ijw} = 1; \quad i = 1, \ldots, N; \quad j = 1, \ldots, M
\]

- The number of nurses needed per day is fulfilled

\[
R_{jwg} \leq \sum_{i=1}^{N} x_{ijw}; \quad j = 1, \ldots, M; \quad g = 1, 2, 3; \quad w = 1, 2, 3
\]

- Each nurse must have two days off per week

\[
\sum_{j=1}^{M} x_{ijw} = 5; \quad i = 1, \ldots, N; \quad w = 1, 2, 3
\]
Constraints definition

Soft constraints:

1. After a night shift a nurse prefers not to have a day shift
2. The schedule has to be seen as fair
3. Maximum number of consecutive working days is 4
4. Minimum number of consecutive working days is 1
5. Maximum number of night shifts is 3
Objectives definition

Objective 1: maximisation of entire schedule fitness

Table 2. Assigned fitness values

<table>
<thead>
<tr>
<th>Days pattern</th>
<th>Assigned penalty value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n d</td>
<td>p_1</td>
</tr>
<tr>
<td>n e</td>
<td>p_2</td>
</tr>
<tr>
<td>e d</td>
<td>p_3</td>
</tr>
</tbody>
</table>

The individual schedule total penalty P_i:

$$P_i = \sum_{t=1}^{M-1} p_{it}$$
Objectives definition

Membership function of fuzzy individual schedule fitness:

$$\mu_{I_i}(P_i) = \begin{cases}
1 & \text{if } P_i \leq p_i^L \\
1 - \frac{P_i - p_i^L}{p_i^U - p_i^L} & \text{if } p_i^L < P_i < p_i^U \\
0 & \text{if } p_i^U \leq P_i
\end{cases}$$
Objective 1: maximisation of entire schedule fitness

to maximise the minimum degree level of satisfaction with respect to individual schedule penalties

maximise \(T \),

where \(T = \min_{i=1,\ldots,N} (\mu_{I_i}(P_i)) \)
Objectives definition

Objective 2: minimisation of entire schedule penalty for breaking the number of consecutive working days soft constraints

\[NC = \sum_{i=1}^{N} wc_i \]

\[wc_i = \begin{cases}
0 & \text{if nurse } i \text{ works } 1 \leq c_i \leq 4 \\
1 & \text{otherwise}
\end{cases} \]
Objective 3: minimisation of entire schedule penalty for having nurses working more than 3 night shifts

\[NS = \sum_{i=1}^{N} w_{ni} \]

\[w_{ni} = \begin{cases}
1 & \text{if nurse } i \text{ works } r_i > 3 \\
0 & \text{otherwise}
\end{cases} \]
SEMOPS method

Sequential Multiobjective Problem Solving

\[z = (z_1, z_2, \ldots, z_p) \]

At most:

\[z_i(x) \leq AL_i; d_i = \frac{z_i(x)}{AL_i} \]

At least:

\[z_i(x) \geq AL_i; d_i = \frac{AL_i}{z_i(x)} \]

Surrogate objective function:

\[s = \sum_{p=1}^{P} d_p \]
Objectives definition

Membership function of fuzzy individual schedule fitness:

\[
\mu_{I_i}(P_i) = \begin{cases}
1 & \text{if } P_i \leq p_i^L \\
1 - \frac{p_i - p_i^L}{p_i^U - p_i^L} & \text{if } p_i^L < P_i < p_i^U \\
-0.5 \frac{P_i - p_i^U}{p_i^U} & \text{if } p_i^U \leq P_i
\end{cases}
\]
Multi-objective genetic algorithm

- Decision Problem Objectives
- DM Aspiration levels
- Fitness Function
 - GA
 - Solutions
Genetic Algorithm definition

• Binary representation
• Binary tournament selection
• Two-point crossover
• Four-point crossover
• Population size 960
• T number of generations
Experimental results

1000 generations, two-point crossover, Pmutation=0.1

SCHEDULE

<table>
<thead>
<tr>
<th>Nurse</th>
<th>day 1</th>
<th>day 2</th>
<th>day 3</th>
<th>day 4</th>
<th>day 5</th>
<th>day 6</th>
<th>day 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>nurse 1</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>n</td>
<td>o</td>
<td>e</td>
<td>o</td>
</tr>
<tr>
<td>nurse 2</td>
<td>e</td>
<td>e</td>
<td>o</td>
<td>d</td>
<td>d</td>
<td>o</td>
<td>d</td>
</tr>
<tr>
<td>nurse 3</td>
<td>d</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>o</td>
<td>o</td>
<td>e</td>
</tr>
<tr>
<td>nurse 4</td>
<td>d</td>
<td>n</td>
<td>n</td>
<td>o</td>
<td>o</td>
<td>e</td>
<td>n</td>
</tr>
<tr>
<td>nurse 5</td>
<td>o</td>
<td>d</td>
<td>e</td>
<td>d</td>
<td>n</td>
<td>o</td>
<td>n</td>
</tr>
<tr>
<td>nurse 6</td>
<td>e</td>
<td>d</td>
<td>o</td>
<td>d</td>
<td>d</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>nurse 7</td>
<td>o</td>
<td>d</td>
<td>d</td>
<td>e</td>
<td>d</td>
<td>o</td>
<td>n</td>
</tr>
<tr>
<td>nurse 8</td>
<td>d</td>
<td>o</td>
<td>e</td>
<td>o</td>
<td>d</td>
<td>n</td>
<td>e</td>
</tr>
</tbody>
</table>

\[d_1 = 1; d_2 = 0; d_3 = 0; \]
Experimental results

1000 generations, four-point crossover, \(P_{\text{mutation}} = 0.1 \)

<table>
<thead>
<tr>
<th>SCHEDULE</th>
<th>day 1</th>
<th>day 2</th>
<th>day 3</th>
<th>day 4</th>
<th>day 5</th>
<th>day 6</th>
<th>day 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>nurse 1</td>
<td>e</td>
<td>o</td>
<td>d</td>
<td>n</td>
<td>e</td>
<td>d</td>
<td>o</td>
</tr>
<tr>
<td>nurse 2</td>
<td>e</td>
<td>e</td>
<td>o</td>
<td>n</td>
<td>o</td>
<td>e</td>
<td>n</td>
</tr>
<tr>
<td>nurse 3</td>
<td>e</td>
<td>e</td>
<td>o</td>
<td>o</td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>nurse 4</td>
<td>o</td>
<td>d</td>
<td>e</td>
<td>n</td>
<td>o</td>
<td>n</td>
<td>e</td>
</tr>
<tr>
<td>nurse 5</td>
<td>n</td>
<td>e</td>
<td>o</td>
<td>d</td>
<td>o</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>nurse 6</td>
<td>o</td>
<td>e</td>
<td>d</td>
<td>d</td>
<td>e</td>
<td>o</td>
<td>d</td>
</tr>
<tr>
<td>nurse 7</td>
<td>d</td>
<td>o</td>
<td>e</td>
<td>o</td>
<td>e</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>nurse 8</td>
<td>d</td>
<td>o</td>
<td>n</td>
<td>e</td>
<td>n</td>
<td>o</td>
<td>n</td>
</tr>
</tbody>
</table>

\(d_1 = 0.875; d_2 = 0; d_3 = 0; \)
Conclusion and Future Work

• The approach proposed has two main characteristics:
 • The nurse scheduling problem is defined as a multi-objective problem with fuzzy individual schedule fitness
 • A hybrid approach based on an interactive sequential method combined with a genetic algorithms is developed

• The use of fuzzy sets is beneficial when subjective judgement is appropriate to use. Individual nurses preferences
Future Work

- The Head nurse’s preferences can be modelled using fuzzy sets
- Linguistically quantified statements can be also used to prioritise the objectives
- Other constraints can be added to the problem
Nurse Scheduling Problem

Table Nurses required in a day

<table>
<thead>
<tr>
<th>Shift</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>day-shift</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>evening-shift</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>night-shift</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
The following set and vectors are defined:

Candidate solutions \(X = \{ x_1, x_2, \ldots, x_V \} \)

Aspirations levels \(AL = [AL_1, AL_2, \ldots, AL_N] \) where \(N \) is the number of objectives.

Vector of distances between the aspiration levels and objective values

\[\Delta_{x_v} = [\Delta_{x_v,1}, \Delta_{x_v,2}, \ldots, \Delta_{x_v,N}] \]
Fitness function definition

Fuzzy set $A = \text{acceptable distance between the objective value and the aspiration level}$

The membership function μ_A represents the degree to which an achieved objective value satisfies the DM with respect to its distance from the aspiration level AL_n.

![Graph showing the membership function $\mu_A(\Delta)$]
Fitness function definition

A linguistically quantified statement = “most distances between the achieved objective values and the aspiration levels are acceptable”

"\(Q A_{x_v}'s \) are \(A \)"

Fitness function \(D \) is defined as:

\[
D(x_v) = \text{Truth}["Q A_{x_v}'s are } A"] = \mu_Q(r_{x_v}) \in [0, 1]
\]
Yager’s algebraic approach:

\[r_{x,v} = \frac{1}{N} \sum_{n=1}^{N} \mu_A (\Delta_{x,v}, n) \]

For the quantifier “most”:

\[\mu_Q (r_{x,v}) = e^{-50(r_{x,v} - 1)^2} \]
Fitness function definition

Find $x_v^* \in X$ that maximises the degree of truth of the linguistically quantified fitness function:

$$D(x_v^*) = \max_{x_v \in X} D(x_v)$$